m103ex-6-10.mw

Transcendental Functions

(Thomas-Finney, Section 6.1, page 456)

Problem 24

Let  f(x) = 1/(x^3) for x not 0.  Find the inverse function, identifying its domain and range.  As a check, writing  the inverse function as g(x), show that both f(g(x))=x  and  g(f(x)) = x.

                   --------------------

> f:=1/x^3;

f := 1/(x^3)

> solve(y=f,x);

1/(y^(1/3)), -1/(2*y^(1/3))+1/2*I*3^(1/2)/y^(1/3), -1/(2*y^(1/3))-1/2*I*3^(1/2)/y^(1/3)

We'll take the first one, because it's real!

> finv:=subs(y=x,%[1]);

finv := 1/(x^(1/3))

> simplify(subs(x=finv,f));

x

> simplify(subs(x=f,finv),symbolic);

x

So we're ok -- let's plot to make sure:

> plot({f,x,finv},x=0..5,-1..5,color=blue,thickness=2,scaling=constrained);

[Plot]

You can see that the two curves are reflections of one another (but it's not easy!).

Section 6.2, page 465, Problem 35

Find the derivative with respect to  x  of  y = int(ln(sqrt(t)), t = x^2/2 .. x^2) .

                   --------------------

Fun with the fundamental theorem:

> assume(x>0);

> diff(int(ln(sqrt(t)),t=x^2/2..x^2),x);

2*x*ln(x)-x*ln(2^(1/2)*x/2)

> simplify(%);

1/2*x*(2*ln(x)+ln(2))

The little tildes "~" indicate that we have made an assumption about x.

Problem 57
Evaluate  
int(2*ln(x)/x, x = 1 .. 2) .

> restart;

> Int(2*ln(x)/x,x=1..2)=int(2*ln(x)/x,x=1..2);

Int(2*ln(x)/x, x = 1 .. 2) = ln(2)^2

Section 6.3, page 472 , Problem 8

Solve ln(1-2*y) = 1 for y.
                   --------------------

> solve(ln(1-2*y)=t,y);

-1/2*exp(t)+1/2

Problem 37
If  
ln(y) = e^y*sin(x) , compute the derivative of  y  with respect to x.

                  --------------------

> eqn:=ln(y(x))=exp(y(x))*sin(x);

eqn := ln(y(x)) = exp(y(x))*sin(x)

> solve(diff(eqn,x),diff(y(x),x));

-exp(y(x))*cos(x)*y(x)/(-1+exp(y(x))*sin(x)*y(x))

Problem 48
Evaluate
int(exp(x/4), x = 0 .. ln(16)) .
                   --------------------

> Int(exp(x/4),x=0..ln(16))=int(exp(x/4),x=0..ln(16));

Int(exp(x/4), x = 0 .. ln(16)) = 4*4^(1/2)-4

Problem 77

a) Derive the linear approximation 1+x for  e^x at  x = 0.

b) If  x  is in the interval [0, 0.2], estimate to 5 decimal places the error in using this approximation.

c) Graph e^x and   1+x together for abs(x) <= 2 . Is one curve always above the other?

                   --------------------

(a) We do the usual tangent line idiom:

> f:=exp(x); tanline:=simplify(subs(x=0,f)+subs(x=0,diff(f,x))*(x-0));

f := exp(x)

tanline := 1+x

Let's plot first, so we can see where the error is worst:

> plot({f,tanline},x=-0.2..0.5,color=blue,thickness=2);

[Plot]

The line is always below the curve, and it's worst at x=0.2. So our upper bound for the error is

> exp(0.2)-subs(x=0.2,tanline);

0.21402758e-1