Constructing abelian varieties providing solutions to the inverse Galois problem for symplectic groups

Valentijn Karemaker (Utrecht University)

Joint with S. Arias-de-Reyna, C. Armana, M. Rebolledo, L. Thomas and N. Vila

Journées Arithmétiques, Debrecen

July 9, 2015
The IGP asks:

IGP

Let G be a finite group. Does there exist a Galois extension L/\mathbb{Q} such that $\text{Gal}(L/\mathbb{Q}) \cong G$?

Galois representations may answer IGP for finite linear groups.

Goal

Obtain realisations of $\text{GSp}(6, \mathbb{F}_\ell)$ as a Galois group over \mathbb{Q}.

We consider Galois representations attached to abelian varieties.
Abelian varieties

Let \(A/\mathbb{Q} \) be a principally polarised abelian variety of dimension \(g \).

\(A(\bar{\mathbb{Q}}) \) is a group. Let \(\ell \) be a prime.

Torsion points \(A[\ell] := \{ P \in A(\bar{\mathbb{Q}}) : [\ell]P = 0 \} \cong (\mathbb{Z}/\ell\mathbb{Z})^{2g} \).

\(G_{\mathbb{Q}} \) acts on \(A[\ell] \), yielding a Galois representation

\[\rho_{A,\ell} : G_{\mathbb{Q}} \to GL(A[\ell]) \cong GL(2g, \mathbb{F}_\ell). \]

The action is compatible with the (symplectic) Weil pairing, hence

\[\rho_{A,\ell} : G_{\mathbb{Q}} \to GSp(A[\ell], \langle \cdot, \cdot \rangle) \cong GSp(2g, \mathbb{F}_\ell). \]

Surjective \(\rho_{A,\ell} \) solve IGP for general symplectic groups.
Sufficient condition for surjectivity of $\rho_{A,\ell}$

Proposition

If $\text{Im}(\rho_{A,\ell}) \supset \text{Sp}(A[\ell], \langle \cdot, \cdot \rangle)$ then $\text{Im}(\rho_{A,\ell}) = \text{GSp}(A[\ell], \langle \cdot, \cdot \rangle)$.

PROOF: We have an exact sequence

$$1 \rightarrow \text{Sp}(A[\ell], \langle \cdot, \cdot \rangle) \rightarrow \text{GSp}(A[\ell], \langle \cdot, \cdot \rangle) \xrightarrow{m} F_\ell^\times \rightarrow 1$$

where $m : A \mapsto a$ when $\langle Av_1, Av_2 \rangle = a\langle v_1, v_2 \rangle$ for all $v_1, v_2 \in A[\ell]$. $G_\mathbb{Q}$ acts such that $m|_{\text{Im}(\rho_{A,\ell})} = \chi_{\ell}$, the **surjective** mod ℓ cyclotomic character. \Box
Let V be a finite-dimensional vector space over \mathbb{F}_ℓ, endowed with a symplectic pairing $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}_\ell$.

A transvection is an element $T \in \text{GSp}(V, \langle \cdot, \cdot \rangle)$ which fixes a hyperplane $H \subset V$.

Theorem (Arias-de-Reyna & Kappen, 2013)

Let $\ell \geq 5$ and let $G \subset \text{GSp}(V, \langle \cdot, \cdot \rangle)$ be a subgroup containing both a non-trivial transvection and an element of non-zero trace whose characteristic polynomial is irreducible. Then $G \supset \text{Sp}(V, \langle \cdot, \cdot \rangle)$.
Main result

Theorem 1 (AdR-A-K-R-T-V)

Let $\ell \geq 13$ be a prime number. There is a family of projective genus 3 curves C/\mathbb{Q} for which

$$\text{Im}(\rho_{\text{Jac}}(C),\ell) = \text{GSp}(6, \mathbb{F}_\ell).$$

Namely, for any distinct odd primes $p, q \neq \ell$ with $q > 1.82\ell^2$, there exist $f_p \in \mathbb{F}_p[x, y]$ and $f_q \in \mathbb{F}_q[x, y]$ such that any $f \in \mathbb{Z}[x, y]$ satisfying

$$f \equiv f_q \pmod{q} \quad \text{and} \quad f \equiv f_p \pmod{p^3},$$

defines such a curve C/\mathbb{Q}: $f(x, y) = 0$.
Main ideas for Theorem 1

p and q are auxiliary primes.

$\mathbb{C}_p/\mathbb{F}_p : f_p(x, y) = 0$ yields a transvection,

$\mathbb{C}_q/\mathbb{F}_q : f_q(x, y) = 0$ yields an element of irreducible characteristic polynomial and non-zero trace.

Simultaneously (Chinese remainder theorem) lift f_p and f_q to f/\mathbb{Z}.

$\mathbb{C}/\mathbb{Q} : f(x, y) = 0$ is such that $\text{Jac}(C)$ has surjective $\rho_{\text{Jac}(C), \ell}$.
Finding transvections: Hall’s condition

Proposition (Hall, 2011)

Let A/\mathbb{Q} be a principally polarised g-dimensional abelian variety. If the Néron model of A/\mathbb{Z} has a semistable fibre at p with toric dimension 1, and if $p \nmid \ell$ and $\ell \nmid |\Phi_p|$, then $\text{Im}(\rho_{A,\ell})$ contains a transvection T.

We may take T to be the image of a generator of the inertia subgroup of any prime in $\mathbb{Q}(A[\ell])$ lying over p.
Finding transvections: Explicit models

Let $f_p(x, y) \in \mathbb{Z}_p[x, y]$ be one of the following:

(H) $y^2 - x(x - p)m(x)$,
$m(x) \in \mathbb{Z}_p[x]$ of degree 5 or 6 with simple $\neq 0$ roots mod p;

(Q) $x^4 + y^4 + x^2 - y^2 + px$.

Then $C_p/\mathbb{Q}_p : f_p(x, y) = 0$ is a smooth projective geometrically connected genus 3 curve.

It has a semistable fibre at p with one ordinary node of thickness 2. Hence $|\Phi_p| = 2$.

Toric dimension = rank of $H^1(\Gamma(C_{\overline{F}_p}), \mathbb{Z}) = 1$.

Hall’s result implies: For 2, p, ℓ distinct primes, $\text{Im}(\rho_{\text{Jac}(C_p), \ell})$ contains a transvection.
Finding irr. characteristic polynomial of non-zero trace

Theorem 2 (AdR-A-K-R-T-V)

Let \(\ell \geq 13 \) be a prime number. For each prime \(q > 1.82\ell^2 \), there exist a smooth geometrically connected curve \(C_q/\mathbb{F}_q \) of genus 3, whose Jacobian \(\text{Jac}(C_q) \) is a 3-dimensional ordinary absolutely simple abelian variety over \(\mathbb{Q} \) such that the characteristic polynomial of its Frobenius endomorphism is irreducible modulo \(\ell \) and has non-zero trace.
Weil q-polynomials

Fix a prime ℓ.

A Weil q-polynomial is a monic polynomial $P_q \in \mathbb{Z}[t]$ of even degree, whose complex roots all have absolute value \sqrt{q}.

Any degree 6 Weil q-polynomial will look like

$$P_q(t) = t^6 + at^5 + bt^4 + ct^3 + qbt^2 + q^2at + q^3.$$
Obtaining an abelian variety

Weil poly. P_q \xrightarrow{(\text{Honda-Tate})} A/Q \xrightarrow{(\text{Oort-Ueno, Serre})} \text{Jac}(C_q)$

- Degree 6
- Ordinary
- Irr. $\mod \mathbb{Z}$
- Irr. $\mod \ell$
- $a \not\equiv 0 \mod \ell$

- Dim. 3
- Ordinary
- Abs. simple
- Frob irr., $\neq 0$ trace

- Genus 3
- “Good”
- Geom. irr.
- Idem
End of proof: existence of suitable P_q

Proposition (AdR-A-K-R-T-V)

For any $\ell \geq 13$ and $q > 1.82\ell^2$, there exists such a Weil polynomial $P_q \in \mathbb{Z}[t]$, with $|a|, |b|, |c| < \frac{\ell-1}{2}$.

This proves Theorem 2, hence Theorem 1.

Thank you for your attention!