Penn Arts & Sciences Logo

Friday, November 8, 2024 - 11:00am

Yiannis Sakellaridis

JHU

Location

University of Pennsylvania

DRL A1

The Riemann zeta function was introduced by Euler, but carries Riemann's name because he was the one who extended it to a meromorphic function on the entire complex plane, and discovered its importance for the distribution of primes. It admits a vast class of generalizations, called L-functions, but, as in Riemann's case, one usually cannot prove anything about them without relying on seemingly unrelated integral representations.
 
In joint work with David Ben-Zvi and Akshay Venkatesh, we elucidate the origin of such integral representations, showing that they are manifestations of a duality between nice Hamiltonian spaces for a pair $(G,\check G)$ of ``Langlands dual'' groups. Over the geometric cousins of number fields -- algebraic curves and Riemann surfaces -- such dualities had been anticipated and constructed in many cases by Gaiotto and others, motivated by mathematical physics. 
 
The first talk will be a gentle and example-oriented introduction to problems in the ``relative'' Langlands program, introducing automorphic L-functions, and various ways of generalizing Riemann's integral representation. We will also talk about the idea of quantization, and why it might be an appropriate framework for studying such constructions.