Uryson k-width of a metric space X measures how close X is to being k-dimensional. Several years ago Larry Guth proved that if M is a closed n-dimensional manifold, and the volume of each ball of radius 1 in M does not exceed a certain small constant e(n), then the Uryson (n-1)-width of M is less than 1. This result is a significant generalization of the famous Gromov's inequality relating the volume and the filling radius that plays a central role in systolic geometry.

Guth asked if a much stronger and more general result holds true: Is there a constant e(m)>o such that each compact metric space with m-dimensional Hausdorff content less than e(m) always has (m-1)-dimensional Uryson width less than 1? Note that here the dimension of the metric space is not assumed to be m, and is allowed to be arbitrary.

Such a result immediately leads to interesting new inequalities even for closed Riemannian manifolds.

In my talk I am are going to discuss a joint project with Yevgeny Liokumovich, Boris Lishak and Regina Rotman towards the positive resolution of Guth's problem.