Penn Arts & Sciences Logo

MathBio Seminar

Friday, January 24, 2020 - 4:00pm

Daniel Cooney

Princeton University


University of Pennsylvania


Here we consider a game theoretic model of multilevel selection in which individuals compete based on their payoff and groups also compete based on the average payoff of group members. Our focus is on the Prisoners' Dilemma: a game in which individuals are best off cheating, while groups of individuals do best when composed of many cooperators. We analyze the dynamics of the two-level replicator dynamics, a nonlocal hyperbolic PDE describing deterministic birth-death dynamics for both individuals and groups. Comparison principles and an invariant property of the tail of the population distribution are used to characterize the threshold level of between-group selection dividing a regime in which the population converges to a delta function at the equilibrium of the within-group dynamics from a regime in which between-group competition facilitates the existence of steady-state densities supporting greater levels of cooperation. In particular, we see that the threshold selection strength and average payoff at steady state depend on a tug-of-war between the individual-level incentive to be a defector in a many-cooperator group and the group-level incentive to have many cooperators over many defectors. We also find that lower-level selection casts a long shadow: if groups are best off with a mix of cooperators and defectors, then there will always be fewer cooperators than optimal at steady state, even in the limit of infinitely strong competition between groups.