Penn Arts & Sciences Logo

Math-Physics Joint Seminar

Wednesday, May 2, 2018 - 2:00pm

Kantaro Ohmori



University of Pennsylvania


Note unusual date and time. Joint with the Deformation Seminar.

Consistent decompositions of moduli spaces of Riemann surfaces yield homotopy algebras such as  A_\infinity or L_\infinity algebras,  that essentially define string field theories (SFTs), supposed to be a non-perturbative definition of the string theory. In the case of open Riemann surfaces, the Strebel differential defines the associative product called Witten’s star-product.


In this talk I would like to describe an attempt to generalize this well-known construction to the case of super-Riemann surfaces and supermoduli of those.



Unlike the case of usual Riemann surfaces, there cannot be an associative product, hence one needs to introduce higher products to construct the desired A_\infty structure.


In this talk I only construct the 2-ary and 3-ary product, and higher products remain to be constructed.


The desired A_\infty structure is expected to be isomorphic to A_\infty structures found by others using other methods in the context of superstring field theory.