In this talk we investigate invariants that count periodic points of a map. Given a self map $f$ of a compact manifold we could detect $n$-periodic points of $f$ by computing the Reidemeister trace of $f^n$ or by computing the equivariant Fuller trace. In 2020 Malkiewich and Ponto showed that the collection of Reidemeister traces of $f^k$ for varying $k|n$ and the equivariant Fuller trace are equivalent as periodic point invariants, and they conjecture that for families of endomorphisms the Fuller trace will be a strictly richer invariant for $n$-periodic points.
In this talk we will explain our new result which confirms Malkiewich and Ponto's conjecture. We do so by proving a new Pontryagin-Thom isomorphism between equivariant parameterized cobordism and the spectrum of sections of a particular parametrized spectrum and using this result to carry out geometric computations.
In this talk we will explain our new result which confirms Malkiewich and Ponto's conjecture. We do so by proving a new Pontryagin-Thom isomorphism between equivariant parameterized cobordism and the spectrum of sections of a particular parametrized spectrum and using this result to carry out geometric computations.